The construction of layered derivations

Jan-Wouter Zwart

This paper starts from the assumption that derivations are layered, in the sense that the numeration N (the set of elements turned into a syntactic structure in the course of the derivation) may contain the output of a previous derivation. It takes a derivation to be an iterative procedure where each step (called Merge) singles out a particular element E from N to be included in the structure under construction (call it the workspace W). The starting assumption then is that the phrase structure status of E is free (it may be a feature, a morpheme, a word, or a phrase), and, at least when N is a phrase, it must be the output of a previous derivation.

Each derivation is also strictly local in the sense that (given a current derivation D1 and a previous derivation D2, with corresponding numerations N1 and N2, and the output of D2 O2 a member of N1) Merge can only introduce in the structure under construction in D1 elements from N1 (including O2), but not members of N2 (terms of O2). The Condition on Extraction Domains (CED, Huang 1982) follows from this basic locality principle, since specifiers and adjuncts must be merged as single elements from N, regardless of their internal complexity; if they are complex, they must be the output of a previous derivation, but their terms must be invisible in the current derivation.

Assuming strict locality of this kind, the concept of layered derivations gives us a range of locality effects for free. In addition to the CED-effects, those include the opacity of idioms and fixed expressions (assuming that idiomaticity is an interface effect, and interfaces are accessed at the end of each subderivation), parentheticals, relative clauses, and potentially a range of other opaque domains. From a theoretical point of view, then, the layered derivation approach to locality provides an alternative to the phase-based approach, with differences to be outlined in the paper.

It will be seen that in the approach advocated here, the explanandum in locality theory shifts to the size of the numeration: why does N1 in relevant cases contain atomic O2 rather than the terms of O2 (i.e. the members of N2)? This question is particularly relevant to opaque complements such as nontransparent embedded clauses. It is this question that I would like to address in the paper.

I propose that a crucial factor dividing up numerations is discourse status: an element that functions as GIVEN (backgrounded) has been processed by the sound and meaning interfaces and therefore must be the output of a previous derivation. This explains the observation that backgrounded complement clauses in languages like Dutch and Turkish (as opposed to simply extraposed complement clauses) are opaque. The paper considers the question whether a similar reasoning may be applied to other islands (factive, interrogative) as well. If a layered derivation approach to such island effects is feasible, the proposal undermines the necessity of postulating successive cyclic movement, removing a potential problem for crash-proof derivations.